Skip to main content
Log in

Spark Plasma Sintering of Ultrafine YSZ Reinforced Cu Matrix Functionally Graded Composite

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Copper matrix composites have received more attentions as possible candidate for thermal and electrical conductive materials to be used in electrical contact applications. In this study, five-layered Cu/YSZ (yttria-stabilized zirconia) functionally graded material (FGM) and copper matrix composite specimens containing 3 and 5 vol% YSZ particles plus pure Cu specimen were synthesized using powder metallurgy (PM) route and spark plasma sintering (SPS) consolidation process. The microstructural and some physical, mechanical features of all specimens were characterized. Microscopic examinations showed that ultrafine YSZ particles were distributed in the copper matrix almost homogeneously. An appropriate interface was observed at each layer of FGM. The density measurement indicated that the graded structure of the composite could be well densified after the SPS process. The microhardness values of various layers of Cu/YSZ FGM specimen were gradually altered from 56.3 (pure copper side) to 75.2 HV (Cu-5 vol% YSZ side). The increase of YSZ content resulted in a decrease in electrical conductivity. Additionally, thermal conductivity of Cu/YSZ FGM specimen [308.0 W/(m K)] was determined to be higher than that of the Cu-5 vol% YSZ composite specimen [260.7 W/(m K)]. Accordingly, it can be concluded that the Cu/YSZ FGM can be a good candidate for the electrical applications, like sliding electrical contacts, where different material characteristics in the same component are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Celikyurek, N.O. Korpe, T. Olcer, R. Gürler, J. Mater. Sci. Technol. 27, 937 (2011)

    Article  Google Scholar 

  2. F. Akhtar, S.J. Askari, K. Ali Shah, X. Du, S. Guo, Mater. Charact. 60, 327 (2009)

    Article  Google Scholar 

  3. S.C. Tjong, K.C. Lau, Mater. Lett. 43, 274 (2000)

    Article  Google Scholar 

  4. R. Ritasalo, X.W. Liua, O. Soderberg, A. Keski-Honkola, V. Pikanen, S.P. Hannula, Procedia Eng. 10, 124 (2011)

    Article  Google Scholar 

  5. M.R. Akbarpour, E. Salehi, F. Alikhani, Hesari. Ceram. Int. 40, 951 (2014)

    Article  Google Scholar 

  6. W. Zein Eddine, P. Matteazzi, J.P. Celis, Wear 297, 762 (2013)

    Article  Google Scholar 

  7. N. Selvakumar, S.C. Vettivel, Mater. Des. 46, 16 (2013)

    Article  Google Scholar 

  8. J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, M.S. Liu, Mater. Lett. 52, 448 (2002)

    Article  Google Scholar 

  9. B.M. Girish, B.R. Basawaraj, B.M. Satish, D.R. Somashekar, Int. J. Compos. Mater. 2, 37 (2012)

    Google Scholar 

  10. T. Larionova, T. Koltsova, Y. Fadin, O. Tolochko, Wear 319, 118 (2014)

    Article  Google Scholar 

  11. J. Zhang, L. He, Y. Zhou, Scr. Mater. 60, 976 (2009)

    Article  Google Scholar 

  12. G. Celebi Efe, M. Ipek, S. Zeytin, C. Bindal, Compos. Pt. B-Eng. 43, 1813 (2012)

    Article  Google Scholar 

  13. A. Fathy, O. El-Kady, Mater. Des. 46, 355 (2013)

    Article  Google Scholar 

  14. C.A. Leon, G. Rodriguez-Ortiz, M. Nanko, E.A. Aguilar, Powder Technol. 252, 1 (2014)

    Article  Google Scholar 

  15. A. Fathy, F. Shehata, M. Abdelhameed, M. Elmahdy, Mater. Des. 36, 100 (2012)

    Article  Google Scholar 

  16. R. Ritasalo, M.E. Cura, X.W. Liu, Y. Ge, T. Kosonen, U. Kanerva, O. Soderberg, S.P. Hannula, Compos. Pt. A-Appl. Sci. Manuf. 45, 61 (2013)

    Article  Google Scholar 

  17. C.L. Yang, H.I. Hsiang, C.C. Chen, Ceram. Int. 31, 297 (2005)

    Article  Google Scholar 

  18. X. Tang, H. Zhang, D. Du, D. Qu, C. Hu, R. Xie, Y. Feng, Int. J. Refract. Met. Hard Mater. 42, 193 (2014)

    Article  Google Scholar 

  19. S. Wei, Z.H. Zhang, X.B. Shen, F.C. Wang, M.Y. Sun, R. Yang, S.K. Lee, Comput. Mater. Sci. 60, 168 (2012)

    Article  Google Scholar 

  20. S. Gholami Shiri, P. Abachi, K. Pourazarang, M. Mohammad Rahvard, Trans. Nonferrous Met. Soc. China 25, 863 (2015)

    Article  Google Scholar 

  21. T.P.D. Rajan, B.C. Pay, Acta Metall. Sin. (Engl. Lett.) 27, 825 (2014)

    Article  Google Scholar 

  22. H. Sato, Y. Inaguma, Y. Watanabe, Mater. Sci. Forum 638–642, 2160 (2010)

    Article  Google Scholar 

  23. T. Kunimine, M. Shibuya, H. Sato, Y. Watanabe, J. Mater. Process. Technol. 214, 294 (2015)

    Article  Google Scholar 

  24. R.X. Guo, F. Yan, H.T. Xia, Adv. Mater. Res. 378–379, 47 (2012)

    Article  Google Scholar 

  25. M.M. Nemat-Alla, M.M. Ata, M.R. Bayoumi, W.K. Eldeen, Mater. Sci. Appl. 2, 1708 (2011)

    Google Scholar 

  26. S. Yang, H. Kim, C.S. Lee, Ceram. Int. 39, 93 (2013)

    Article  Google Scholar 

  27. Y. Meng, J. Zhang, C. Duan, C. Chen, X. Feng, Y. Shen, Adv. Powder Technol. 26, 392 (2015)

    Article  Google Scholar 

  28. Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, Y.D. Wang, Scr. Mater. 81, 56 (2014)

    Article  Google Scholar 

  29. M.S. Yurlova, V.D. Demenyuk, L.Y. Lebedeva, D.V. Dudina, E.G. Grigoryev, E.A. Olevsky, J. Mater. Sci. 49, 952 (2014)

    Article  Google Scholar 

  30. L.H. Liu, C. Yang, L.M. Kang, S.G. Qu, X.Q. Li, W.W. Zhang, W.P. Chen, Y.Y. Li, P.J. Li, L.C. Zhang, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  31. L.H. Liu, C. Yang, L.M. Kang, Y. Long, Z.Y. Xiao, P.J. Li, L.C. Zhang, Mater. Sci. Eng., A 650, 171 (2016)

    Article  Google Scholar 

  32. L.H. Liu, C. Yang, F. Wang, S.G. Qu, X.Q. Li, W.W. Zhang, Y.Y. Li, L.C. Zhang, Mater. Des. 79, 1 (2015)

    Article  Google Scholar 

  33. T. Rajan, R. Pillai, B. Pai, Mater. Charact. 61, 923 (2010)

    Article  Google Scholar 

  34. H. Kwon, M. Leparoux, A. Kawasaki, J. Mater. Sci. Technol. 30, 736 (2014)

    Article  Google Scholar 

  35. J.J. Sobczak, L. Drenchev, J. Mater. Sci. Technol. 29, 297 (2013)

    Article  Google Scholar 

  36. K. Dash, B.C. Ray, D. Chaira, J. Alloys Compd. 516, 78 (2012)

    Article  Google Scholar 

  37. J. Mirazimi, P. Abachi, K. Purazrang, Trans. Nonferrous Met. Soc. China 26, 1745 (2016)

    Article  Google Scholar 

  38. D. Maeland, C. Suciu, I. Waernhus, A.C. Hahhmann, J. Eu. Ceram. Soc. 29, 2537 (2009)

    Article  Google Scholar 

  39. S. Diouf, A. Molinari, Powder Technol. 221, 220 (2012)

    Article  Google Scholar 

  40. Z.H. Zhang, F.C. Wang, L. Wang, S.K. Li, Mater. Sci. Eng., A 476, 201 (2008)

    Article  Google Scholar 

  41. J.S. Kim, D.V. Dudina, J.C. Kim, Y.S. Kwon, J.J. Park, C.K. Rhee, J. Nanosci. Nanotechnol. 10, 252 (2010)

    Article  Google Scholar 

  42. T.L. Ngain, W. Zheng, Y. Li, Mater. Int. 23, 70 (2013)

    Google Scholar 

  43. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, J. Nanomater. 2012, 18 (2012)

    Article  Google Scholar 

  44. M. Khaloobagheri, B. Janipour, N. Askari, Adv. Mater. Res. 829, 610 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Mirazimi.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirazimi, J., Abachi, P. & Purazrang, K. Spark Plasma Sintering of Ultrafine YSZ Reinforced Cu Matrix Functionally Graded Composite. Acta Metall. Sin. (Engl. Lett.) 29, 1169–1176 (2016). https://doi.org/10.1007/s40195-016-0512-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0512-0

Keywords

Navigation